Group Similarity Transformation of a Time Dependent Chemical Convective Process

نویسندگان

  • M. M. Kassem
  • A. S. Rashed
چکیده

The time dependent progress of a chemical reaction over a flat horizontal plate is here considered. The problem is solved through the group similarity transformation method which reduces the number of independent by one and leads to a set of nonlinear ordinary differential equation. The problem shows a singularity at the chemical reaction order n=1 and is analytically solved through the perturbation method. The behavior of the process is then numerically investigated for n≠1 and different Schmidt numbers. Graphical results for the velocity and concentration of chemicals based on the analytical and numerical solutions are presented and discussed. Keywords—Time dependent, chemical convection, group transformation method, perturbation method. Nomenclature Latin characters a1, a2= unity elements c = species concentration C = non-dimensional species concentration c0 = concentration next to the plate c∞ = ambiant concentration D = chemical molecular diffusivity. F’ = horizontal velocity after transformation g = gravitational acceleration G = group k = chemical rate constant n = chemical reaction order Q, T = real valued coefficients S = subgroup Sc = Schmidt number ν/ D u = velocity in x direction v = velocity in y direction Greek characters β= volumetric coefficient of expansion with concentration ν = μ/ρ = kinematic viscosity of fluid ρ = fluid density ψ = stream function η =similarity variable ---------------------------------------------Magda Kassem, Prof. of Mathematics, is with Mathematics and Physics Department, Faculty of Engineering, Zagazig University, Egypt. Ahmed Rashed is with Mathematics and Physics Department, Faculty of Engineering, Zagazig University, Egypt.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of Some Thermo-Physical Parameters on Free Convective Heat and Mass Transfer over Vertical Stretching Surface at Absolute Zero

Effects of some thermo-physical parameters on free convective heat and mass transfer over a vertical stretching surface at lowest level of heat energy in the presence of suction is investigated. The viscosity of the fluid is assumed to vary as a linear function of temperature and thermal conductivity is assumed constant. A similarity transformation is applied to reduce the governing equations i...

متن کامل

Effect of Thermal Conductivity and Emissivity of Solid Walls on Time-Dependent Turbulent Conjugate Convective-Radiative Heat Transfer

In the present study, the conjugate turbulent free convection with the thermal surface radiation in a rectangular enclosure bounded by walls with different thermophysical characteristics in the presence of a local heater is numerically studied. The effects of surface emissivity and wall materials on the air flow and the heat transfer characteristics are the main focus of the present investigati...

متن کامل

An Analytical Solution of the Convective Drying of a Multicomponent Liquid Film

Analytical solutions of the diffusion and conduction equations applied to liquidside-controlled convective drying of a multicomponent liquid film are developed. Assuming constant physical properties of the liquid, the equations describing interactive mass transfer are decoupled by a similarity transformation and solved simultaneously with conduction equation by the method of variable separation...

متن کامل

Dehydration Characteristics of Whole Lemons in a Convective Hot Air Dryer

In this study, whole lemons were dried using a laboratory convective hot air dryer and the effects of drying temperature on dehydration behaviour and mass transfer characteristics of the lemons were investigated. The drying experiments were conducted using air temperatures of 50, 60 and 75 °C and air velocity of 1 m/s. It was observed that the drying temperature affected the drying time and...

متن کامل

Analysis of Transient Rivlin-Ericksen Fluid and Irreversibility of Exothermic Reactive Hydromagnetic Variable Viscosity

This study analyzes the unsteady Rivlin-Ericksen fluid and irreversibility of exponentially temperature dependent variable viscosity of hydromagnetic two-step exothermic chemical reactive flow along the channel axis with walls convective cooling. The non-Newtonian Hele-Shaw flow of Rivlin-Erickson fluid is driven by bimolecular chemical kinetic and unvarying pressure gradient. The reactive flui...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012